MPC - Brief overview and software

Dr. Lilli Frison

Fraunhofer Institute for Solar Energy System ISE,
Department of Microsystems Engineering IMTEK,
University of Freiburg

AN
1 \\

July 12, 2023

-~
—
’
.
B
B

-
[

Control challenges in a renewable-based energy system

Control challenges in a renewable-based energy system

Transition from a fossil fuel based to a renewable-based energy system poses new (control) challenges:
m high energy yield but fluctuating

m grid stability, supply reliability

m energy storage

m energy efficiency (e.g. buildings, heating networks, technologies)

Renewable-based energy system are highly diverse and complex systems:
m nonlinear (wind energy, hydraulics)

m mixed-integer (energy networks, plant dynamics, change of dynamics)
m fast and slow dynamics (seasonal storages)

— Increasingly complex systems (multi-energy networks, 4/5G district heating, integrated PVT-HP systems) and
technologies (heat pumps, PV/PVT, seasonal storages, (airborne) wind energy) require advanced control techniques.

What is Model Predictive Control (MPC)

Feedback control

Feedback control

m Measure output of the process ("sensors”)
— compare with set point (reference)
— error is given to controller
— controller generates manipulated variable (" actuator”) to control the
process

m Traditional feedback control: PID (computes proportional, integral and
differential terms) control

Model Predictive Control (MPC)
m Most relevant higher control concept in industry applications
m Real-time, repeated optimization to choose control

m Controller explicitly contains a model of the system (enables predictive
operation & state constraints)

Disturbances

Reference value

Actuated value

r(t)

Controller

u(t)

Block diagramm

Measurement value

y(t)

Output

MPC loop (receding horizon control)

m Model-based
m Predictive: look into the future using the process model

m Control: optimization-based feedback control

Algorithm:
1. Estimate current state z;.
2. Solve optimal control problem (OCP).

3. Apply only very first part of the computed optimal control trajectory.

4. Wait until new measurement becomes available at time k£ + 1 and

re p eat.
Do Plan
Do Plan

Do | Plan

ko k+1 k+2 k43

Figure: Receding horizon strategy introduces feedback in an MPC-based control loop.

Reference Value Trajectory

Controlled Value Trajectory

y(-[k)
L L 1 k L L [1 L [>
A
Model
Actuated Value Trajectory
— ullk)
Controll Horizon
1 1 1 1 [1 [1 »
k
Past < P Future (Prediction)

Sampling Index

Formulation of Continuous-Time Optimal Control Problems (OCP)

Problem is defined by

m Objective that is minimized (running + final
cost)

m Internal system model to predict system behavior

m Constraints that have to be satisfied

y
)_ _________________
states z(t)
initial value
Xo 7

(] / -

// P
/
\/ controls u(t)

minimize / Liz(t) u(t) dt + E(x(T))

T, U
subject to
z(0) = o, (fixed initial value)
i(t) = fla(t),u(t)), t€10,7], (ODE model)
h(x(t),u(t)) < 0, t€0,7], (path constraints)
path constraints h(z,u) <0 !
________________________ 4
: T R % terminal
JL constraint 7(z(7)) <0

Different MPC variants (there exist many more)

Form of model equations:

Linear MPC (LMPC
() Nonlinear MPC (NMPC)

1 e, /TL((t),u(t)) dt + E(x(T))
L - T T S x(t),u x
Oy y WUN-] -
subject to
subject to 2(0) =

To = %o, z(t) = f(x(t), ult)), t € [0,T],

Tern = Aot Bu, o k=0, N =1 h((t), ult)) < 0, te 0,7
OQ’J‘FDU S O,)

Objective function:
Tracking MPC: Follow a given reference trajectory, e.g., keep the room temperature near the set-point

Trajectory planning MPC: Compute optimal trajectory, which minimizes a cost function, e.g. optimal energy storage charging
profile during the day

Solution methods for MPC

How to implement and solve OCPs?

Collocation
Interior-Point
' _ Interior-Point
OCP —— Single-Shooting ——» NLP QP solver
SQP
Multiple-Shooting
Active-Set
) QP solver

m Use higher-level OCP solver, e.g. rockit to discretize and solve conitnuous-time OCP
— Works for standard OCPs (without special dynamics (mixed-integer,...))

m Discretize OCP, e.g. using CasAD1i, and solve with specialized optimization solvers, e.g. IPOPT (NLP solver), Bonmin or SCIP
(MILP solver)

m LMPC: specialized solution methods using QP solvers

Direct multiple shooting

m first step (in all direct methods): parameterization of the control function u(t) on a fixed grid 0 =ty <t; < ... <ty =T, eg.

piecewise constant:
u(t;q)=q; if telt,tin],i=0,...,N—1.

m shooting methods use embedded ODE solver to eliminate the continuous time dynamic system by forward simulation

m resulting discretized NLP with 2 obtained by forward simulation:

N-1
minimize Z li(si, i) + E(sn) ‘
54 i=0 i(tit1s Siy 4i) 7 Siv1 |
subject to o s/‘/ /. //K SN

o —sg = 0, (initial value) s S Sitl

Ti(tiv1; 8iy¢i) — Sin = 0, i=0,...,N —1, (continuity) L9 e oo {
h(si,q;) < 0, i=0,..., N, (discretized path constraints) Q B
r(sy) <0 (terminal constraints) tot ttisn T tn-a tn

Direct collocation

m parameterize the control function as before

m also discretize states by polynomial approximation of state trajectory on a finer collocation grid (collocation points)

) .)) K
= on each interval [t;, t;11] @ = f(z,u;) is approximated by z(v;,t) =Y 1, vf Pt
coefficients polynomials

m constraints are given by conditions on collocation grid

m resulting fully discretized large-scale NLP:

N—1
minimize Zli(siavia%) + E(sn)
S, 0, q P
subject to
sop—xg = 0, (fixed initial value)
ci(si,vi,q;) = 0, i=0,...,N—1, (collocation conditions)
pi(tiv;v;) — siz1 = 0, i=0,...,N—1, (continuity conditions)
h(si,q;) < 0, i=0,...,N—1, (discretized path constraints)
r(sy) < 0 (terminal constraints)

Software

CasADi at a glance

What is CasADi?
A general-purpsose software framework for quick, yet efficient, implementation of algorithms for numeric optimization

In particular

Facilitates the solution of optimal control problems (OCPs) using a variety of different methods by implementing algorithmic
differentiation (AD) and defining interfaces to NL solvers

m Facilitates, not actually solve the OCPs

m Faciltates implementation of direct collocation and shooting methods for discretization

Source Code
m Free & open-source (LGPL)

m Use from C++ or Python
m Project started in December 2009 at KU Leuven by Andersson under the supervision of Prof. Moritz Diehl
= Original motivation: Solve OCPs with models from Modelica

m Since 2012, a growing number of users — now a mature project

Where CasADi lives

casadi.org — github.com

@ . Searchortypeacommand @ {3 Explore Gist Blog Help jaiis B X B
casadi/ casadi [l Pull Request @G Unwatch - o Unstar <4 [# Fork <4

Code Network Pull Requests 0 Issues 120 WViki Graphs Settings

Home Pages Wiki History Git Access

Home New Page Edit Page Page History

CasADi

Welcome to the CasADi wiki!

CasADi is a symbolic framework for automatic differentiation and numeric optimization. Using the syntax of computer algebra systems, it
implements automatic differentiation in forward and adjoint modes by means of a hybrid symbolic/numeric approach. The main purpose of the tool
is to be a low-level tool for quick, yet highly efficient implementation of algorithms for numerical optimization. Of particular interest is dynamic
optimization, using either a collocation approach, or a shooting-based approach using embedded ODE/DAE-integrators. In either case, CasADi
relieves the user from the work of efficiently calculating the relevant derivative or ODE/DAE sensitivity information to an arbitrary degree, as
needed by the NLP solver. This together with full-featured Python and Cciave front ends, as well as back ends to state-of-the-art codes such as
Sundials (CVODES. IDAS and KINSOL), IPOPT and KNITRO, drastically reduces the effort of implementing the methods compared to a pure
C/C++/Fortran approach.

Every feature of CasADiI (with very few exceptions) is available in C++, Python and Octave, with little to no difference in performance, so the user
has the possibility of working completely in C++, Python or Octave or mixing the languages. We recommend new users to try out the Python
version first, since it allows interactivity and is more stable and better documented than the Octave front-end.

CasADi is an open-source tool, written in self-contained C++ code, depending only on the Standard Template Library. It is developed by Joel
Andersson and Joris Gillis at the Optimization in Engineering Center, OPTEC of the K.U. Leuven under supervision of Moritz Dienl. CasADI is
distributed under the LGPL license, meaning the code can be used royalty-free even in commercial applications.

casadi.org
github.com

More about CasADi

m Central feature I: general-purpose implementation of AD
m Central feature Il: solve standard problems conveniently

- QPs, NLPs, Rootfinding problems, Initial-value problems (IVP) in ODE/DAE
= Provides convenient interfaces to mixed-integer and other specialized solvers, e.g. BONMIN for solving MINLP, which is

disctributed with CasADi

Matrices in CasAD
m CasADi is everything-is-a-matrix (cf. MATLAB)

m All matrices are sparse

m Syntax is MATLAB inspired

SX.sym("x",2,3) 2-by-3 symbolic primitive
SX.zeros (4,5) dense 4-by-5 matrix with all zeros
SX.sparse(4,5) sparse (empty) 4-by-5 matrix

SX.eye (4) 4-by-4 identity matrix

Symbolic framework of CasADi

What you need to know
m CasADi allows you to symbolic expressions using syntax similar to e.g. Symbolic Math Toolbox for MATLAB or SymPy.

from casadi import *

x = SX.sym("x" Variable x with display name "x"
f = sqrt(x**x2 + 10) f=vx*+10
g = sin(x) g = sin(x)
m These functions are then used to define functions . ..
: . R —- RxR
F = SXFunction([x],[f,g]) Defines [F':
() — (f,9)

F.init ()

m ...that can e.g. be automatically differentiated using algorithmic differentiation (AD)

R - RxRxR
J = F.jacobian() Defines J: of
: 0 = (Gt

Two symbolic types with (almost) the same syntax

m SX: Expression graph with scalar-valued operations
m Low overhead, for simple functions
x = SX.sym("x",2,2)
f = sin(x*x*x2 + 10)
print x, f
To ITo sSin SC% + 10 sin x% + 10
Tr1 X3 sinzf 4+ 10 sinz3 + 10

Why?

m MX: Expression graph with matrix-valued operations
m Larger overhead, but more generic
x = MX.sym("x",2,3)

f = sin(x**2 + 10)
print f

x, sinz?®+ 10

By mixing, construct expressions (functions) that are both fast and generic

rockit

An Optimal Control Problem abstraction class, built on top of CasADi
https://gitlab.kuleuven.be/meco-software/rockit
rockit

Description

Rockit (Rapid Optimal Control kit) is a software framework to quickly prototype optimal control problems (aka dynamic optimization) that may arise in engineering: e.q. iterative learning

(ILC), model predictive control (NMPC), system identification, and motion planning.

Notably, the software allows free end-time problems and multi-stage optimal problems. The software is currently focused on direct methods and relies heavily on CasADi. The software is
developed by the KU Leuven MECO research team.

Installation

Install using pip: pip install rockit-meco

https://gitlab.kuleuven.be/meco-software/rockit

Example - How to solve OCPs with rockit?

Start an OCP environment with a time horizon of 10s # Pick an NL'D sol\'/er backend
ocp = Ocp(t0=0, T=10) ocp.solver('ipopt')

Pick a solution method
method = MultipleShooting (N=10, intg="rk")
ocp . method (method)

Define two scalar states
x1 = ocp.state()
x2 = ocp.state()

Define one piecewise constant control input # Solve
u = ocp.control () sol = ocp.solve()
10

Specify differential equations for states g”ﬂ / z1(t)? + 2o(1)* +u(t)? dt + 21(10)
ocp.set_der(x1l, (1 — x2%%2) % x1 — x2 4+ u ’ 0
ocE.setderEx2 >(<1))) st a1 =(1-a3)m — o tu

, :E‘QZ(CCl
Lagrange objective term: signals in an integrand 71(0) =0
ocp.add_objective(ocp.integral (x1%%2 4+ x2%%2 + uxx2)) 75(0) =1
Mayer objective term: signals evaluated at t_f = t0_+T z1(t) > 0.25
ocp.add_objective (ocp.at_tf(x1*x2)) 1<ut) <1
Path constraints . —
ocp.subject_to(x1 >= —0.25) o5 mal-SU
ocp.subject_to(—1 <= (u<=1)) o5
Boundary constraints 02
ocp.subject_to(ocp.at_t0(x1l) = 0) 0
ocp.subject_to(ocp.at_t0(x2) = 1) v

0 2 4 [] 10
Times [s]

	Control challenges in a renewable-based energy system
	What is Model Predictive Control (MPC)
	Solution methods for MPC
	Software
	CasADi
	rockit

