
MPC – Brief overview and software

Dr. Lilli Frison

Fraunhofer Institute for Solar Energy System ISE,
Department of Microsystems Engineering IMTEK,
University of Freiburg

July 12, 2023



Control challenges in a renewable-based energy system



Control challenges in a renewable-based energy system

Transition from a fossil fuel based to a renewable-based energy system poses new (control) challenges:

high energy yield but fluctuating

grid stability, supply reliability

energy storage

energy efficiency (e.g. buildings, heating networks, technologies)

Renewable-based energy system are highly diverse and complex systems:

nonlinear (wind energy, hydraulics)

mixed-integer (energy networks, plant dynamics, change of dynamics)

fast and slow dynamics (seasonal storages)

→ Increasingly complex systems (multi-energy networks, 4/5G district heating, integrated PVT-HP systems) and

technologies (heat pumps, PV/PVT, seasonal storages, (airborne) wind energy) require advanced control techniques.



What is Model Predictive Control (MPC)



Feedback control

Feedback control

Measure output of the process (”sensors”)

→ compare with set point (reference)

→ error is given to controller

→ controller generates manipulated variable (”actuator”) to control the

process

Traditional feedback control: PID (computes proportional, integral and

differential terms) control

Model Predictive Control (MPC)

Most relevant higher control concept in industry applications

Real-time, repeated optimization to choose control

Controller explicitly contains a model of the system (enables predictive

operation & state constraints)

Controller System

Measurement value
y(t)

Disturbances

Actuated value
u(t)

Reference value
r(t) Output

Block diagramm



MPC loop (receding horizon control)

Model-based

Predictive: look into the future using the process model

Control: optimization-based feedback control

Algorithm:

1. Estimate current state x̂k.

2. Solve optimal control problem (OCP).

3. Apply only very first part of the computed optimal control trajectory.

4. Wait until new measurement becomes available at time k + 1 and

repeat.

k k + 1 k + 2 k + 3 · · ·

Do Plan

Do Plan

Do Plan

Figure: Receding horizon strategy introduces feedback in an MPC-based control loop.



Formulation of Continuous-Time Optimal Control Problems (OCP)

Problem is defined by

Objective that is minimized (running + final

cost)

Internal system model to predict system behavior

Constraints that have to be satisfied

minimize
x, u

∫ T

0

L(x(t), u(t)) dt + E (x(T ))

subject to

x(0) = x0, (fixed initial value)

ẋ(t) = f (x(t), u(t)), t ∈ [0, T ], (ODE model)

h(x(t), u(t)) ≤ 0, t ∈ [0, T ], (path constraints)

terminal

constraint r(x(T )) ≤ 0

6 path constraints h(x, u) ≤ 0

initial value

x0 w
states x(t)

controls u(t)

-r
0 t

r
T



Different MPC variants (there exist many more)

Form of model equations:

Linear MPC (LMPC)

minimize
x0,...,xN

u0, . . . , uN−1

1

2
x⊤NPNxN +

1

2

N−1∑
k=0

x⊤k Qxk + u⊤k Ruk

subject to

x0 = x̂0,

xk+1 = Axk +Buk, k = 0, . . . , N − 1,

Cx +Du ≤ 0, ,

Nonlinear MPC (NMPC)

minimize
x, u

∫ T

0

L(x(t), u(t)) dt + E (x(T ))

subject to

x(0) = x0,

ẋ(t) = f (x(t), u(t)), t ∈ [0, T ],

h(x(t), u(t)) ≤ 0, t ∈ [0, T ],

Objective function:

Tracking MPC: Follow a given reference trajectory, e.g., keep the room temperature near the set-point

Trajectory planning MPC: Compute optimal trajectory, which minimizes a cost function, e.g. optimal energy storage charging

profile during the day



Solution methods for MPC



How to implement and solve OCPs?

Use higher-level OCP solver, e.g. rockit to discretize and solve conitnuous-time OCP
−→ Works for standard OCPs (without special dynamics (mixed-integer,...))

Discretize OCP, e.g. using CasADi, and solve with specialized optimization solvers, e.g. IPOPT (NLP solver), Bonmin or SCIP

(MILP solver)

LMPC: specialized solution methods using QP solvers



Direct multiple shooting

first step (in all direct methods): parameterization of the control function u(t) on a fixed grid 0 = t0 < t1 < . . . < tN = T , e.g.

piecewise constant:

u(t; q) = qi if t ∈ [ti, ti+1], i = 0, . . . , N − 1.

shooting methods use embedded ODE solver to eliminate the continuous time dynamic system by forward simulation

resulting discretized NLP with x obtained by forward simulation:

minimize
s, q

N−1∑
i=0

li(si, qi) + E (sN)

subject to

x0 − s0 = 0, (initial value)

xi(ti+1; si, qi)− si+1 = 0, i = 0, . . . , N − 1, (continuity)

h(si, qi) ≤ 0, i = 0, . . . , N, (discretized path constraints)

r (sN) ≤ 0. (terminal constraints)

r r r r r
6
s0 s1

si si+1

xi(ti+1; si, qi) ̸= si+1
@
@R r r r r r

6

qix0er
-q

t0

q0q
t1

q q
ti

q
ti+1

q q
tN−1

r sN−1

q
tN

r sN



Direct collocation

parameterize the control function as before

also discretize states by polynomial approximation of state trajectory on a finer collocation grid (collocation points)

on each interval [ti, ti+1] ẋ = f (x, ui) is approximated by x(vi, t) =
∑K

k=0 vki︸︷︷︸
coefficients

P k
i (t)︸ ︷︷ ︸

polynomials

constraints are given by conditions on collocation grid

resulting fully discretized large-scale NLP:

minimize
s, v, q

N−1∑
i=0

li(si, vi, qi) + E (sN)

subject to

s0 − x0 = 0, (fixed initial value)

ci(si, vi, qi) = 0, i = 0, . . . , N − 1, (collocation conditions)

pi(ti+1; vi)− si+1 = 0, i = 0, . . . , N − 1, (continuity conditions)

h(si, qi) ≤ 0, i = 0, . . . , N − 1, (discretized path constraints)

r (sN) ≤ 0. (terminal constraints)



Software



CasADi at a glance

What is CasADi?

A general-purpsose software framework for quick, yet efficient, implementation of algorithms for numeric optimization

In particular

Facilitates the solution of optimal control problems (OCPs) using a variety of different methods by implementing algorithmic

differentiation (AD) and defining interfaces to NL solvers

Facilitates, not actually solve the OCPs

Faciltates implementation of direct collocation and shooting methods for discretization

Source Code

Free & open-source (LGPL)

Use from C++ or Python
Project started in December 2009 at KU Leuven by Andersson under the supervision of Prof. Moritz Diehl

Original motivation: Solve OCPs with models from Modelica

Since 2012, a growing number of users – now a mature project



Where CasADi lives

casadi.org → github.com

casadi.org
github.com


More about CasADi

Central feature I: general-purpose implementation of AD
Central feature II: solve standard problems conveniently

QPs, NLPs, Rootfinding problems, Initial-value problems (IVP) in ODE/DAE

Provides convenient interfaces to mixed-integer and other specialized solvers, e.g. BONMIN for solving MINLP, which is

disctributed with CasADi

Matrices in CasAD

CasADi is everything-is-a-matrix (cf. MATLAB)

All matrices are sparse

Syntax is MATLAB inspired

SX.sym("x" ,2,3) 2-by-3 symbolic primitive

SX.zeros (4,5) dense 4-by-5 matrix with all zeros

SX.sparse (4,5) sparse (empty) 4-by-5 matrix

SX.eye(4) 4-by-4 identity matrix



Symbolic framework of CasADi

What you need to know

CasADi allows you to symbolic expressions using syntax similar to e.g. Symbolic Math Toolbox for MATLAB or SymPy.

from casadi import *

x = SX.sym("x") Variable x with display name "x"

f = sqrt(x**2 + 10) f =
√
x2 + 10

g = sin(x) g = sin(x)

These functions are then used to define functions . . .

F = SXFunction ([x],[f,g]) Defines F :
R → R× R

(x) 7→ (f, g)

F.init()

. . . that can e.g. be automatically differentiated using algorithmic differentiation (AD)

J = F.jacobian () Defines J :
R → R× R× R

(x) 7→
(
∂f

∂x
, f, g

)



Two symbolic types with (almost) the same syntax

SX: Expression graph with scalar-valued operations

Low overhead, for simple functions

x = SX.sym("x" ,2,2)

f = sin(x**2 + 10)

print x, f[
x0 x2
x1 x3

]
,

[
sinx20 + 10 sinx22 + 10

sinx21 + 10 sinx23 + 10

]

MX: Expression graph with matrix-valued operations

Larger overhead, but more generic

x = MX.sym("x" ,2,3)

f = sin(x**2 + 10)

print f

x, sinx2 + 10

Why?

By mixing, construct expressions (functions) that are both fast and generic



rockit

An Optimal Control Problem abstraction class, built on top of CasADi

https://gitlab.kuleuven.be/meco-software/rockit

https://gitlab.kuleuven.be/meco-software/rockit


Example - How to solve OCPs with rockit?

# St a r t an OCP env i ronment w i th a t ime ho r i z o n o f 10 s
ocp = Ocp( t0=0, T=10)

# Def i n e two s c a l a r s t a t e s
x1 = ocp . s t a t e ( )
x2 = ocp . s t a t e ( )

# Def i n e one p i e c ew i s e con s t an t c o n t r o l i n pu t
u = ocp . c o n t r o l ( )

# Spe c i f y d i f f e r e n t i a l e q u a t i o n s f o r s t a t e s
ocp . s e t d e r ( x1 , (1 = x2 **2) * x1 = x2 + u )
ocp . s e t d e r ( x2 , x1 )

# Lagrange o b j e c t i v e term : s i g n a l s i n an i n t e g r a n d
ocp . a d d o b j e c t i v e ( ocp . i n t e g r a l ( x1 **2 + x2 **2 + u **2))
# Mayer o b j e c t i v e term : s i g n a l s e v a l u a t e d at t f = t 0 +T
ocp . a d d o b j e c t i v e ( ocp . a t t f ( x1 **2))

# Path c o n s t r a i n t s
ocp . s u b j e c t t o ( x1 >= =0.25)
ocp . s u b j e c t t o (=1 <= (u <= 1 ) )

# Boundary c o n s t r a i n t s
ocp . s u b j e c t t o ( ocp . a t t 0 ( x1 ) == 0)
ocp . s u b j e c t t o ( ocp . a t t 0 ( x2 ) == 1)

# Pick an NLP s o l v e r backend
ocp . s o l v e r ( ’ i p o p t ’ )

# Pick a s o l u t i o n method
method = Mu l t i p l e S hoo t i n g (N=10, i n t g=’ rk ’ )
ocp . method (method )

# So l v e
s o l = ocp . s o l v e ( )

min
x, u

∫ 10

0

x1(t)
2 + x2(t)

2 + u(t)2 dt + x1(10)

s.t. ẋ1 = (1− x2
2)x1 − x2 + u

ẋ2 = x1

x1(0) = 0

x2(0) = 1

x1(t) ≥ 0.25

−1 ≤ u(t) ≤ 1


	Control challenges in a renewable-based energy system
	What is Model Predictive Control (MPC)
	Solution methods for MPC
	Software
	CasADi
	rockit


